38.5k views
2 votes
Find the requested function value.

Find (f ∘ g)(-9) when f(x) = 9x + 5 and g(x) = -4x2 - 6x + 3.


A.-2398

B.-22,645

C.763

D.842

User Seeiespi
by
7.7k points

1 Answer

2 votes

Given:

Given that the functions
f(x)=9 x+5 and
g(x)=-4x^2-6x+3

We need to determine the value of the function
(f \circ g)(-9)

First, we shall determine the value of the function
(f \circ g)(x)

The value of the function
(f \circ g)(x):

Let us determine the value of the function
(f \circ g)(x)

Thus, we have;


(f \circ g)(x)=f[g(x)]


=f(-4x^2-6x+3)


=9(-4x^2-6x+3)+5


=-36x^2-54x+27+5


(f \circ g)(x)=-36x^2-54x+32

Thus, the value of the function is
(f \circ g)(x)=-36x^2-54x+32

The value of the function
(f \circ g)(-9):

The value of the function
(f \circ g)(-9) can be determined by substituting x = -9 in the function
(f \circ g)(x)=-36x^2-54x+32

Thus, we have;


(f \circ g)(-9)=-36(-9)^2-54(-9)+32


=-36(81)-54(-9)+32


=-2916+486+32


(f \circ g)(-9)=-2398

Thus, the value of the function
(f \circ g)(-9) is -2398

Hence, Option A is the correct answer.

User HattrickNZ
by
8.2k points