38.5k views
2 votes
Find the requested function value.

Find (f ∘ g)(-9) when f(x) = 9x + 5 and g(x) = -4x2 - 6x + 3.


A.-2398

B.-22,645

C.763

D.842

User Seeiespi
by
8.6k points

1 Answer

2 votes

Given:

Given that the functions
f(x)=9 x+5 and
g(x)=-4x^2-6x+3

We need to determine the value of the function
(f \circ g)(-9)

First, we shall determine the value of the function
(f \circ g)(x)

The value of the function
(f \circ g)(x):

Let us determine the value of the function
(f \circ g)(x)

Thus, we have;


(f \circ g)(x)=f[g(x)]


=f(-4x^2-6x+3)


=9(-4x^2-6x+3)+5


=-36x^2-54x+27+5


(f \circ g)(x)=-36x^2-54x+32

Thus, the value of the function is
(f \circ g)(x)=-36x^2-54x+32

The value of the function
(f \circ g)(-9):

The value of the function
(f \circ g)(-9) can be determined by substituting x = -9 in the function
(f \circ g)(x)=-36x^2-54x+32

Thus, we have;


(f \circ g)(-9)=-36(-9)^2-54(-9)+32


=-36(81)-54(-9)+32


=-2916+486+32


(f \circ g)(-9)=-2398

Thus, the value of the function
(f \circ g)(-9) is -2398

Hence, Option A is the correct answer.

User HattrickNZ
by
8.6k points

Related questions

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories