Answer:
62 MPa
Step-by-step explanation:
We are given that
Critical resolved shear stress for a metal,
![\tau_(crit)=31MPa](https://img.qammunity.org/2021/formulas/physics/college/ny4stv74gr2tjbsauf5g3lhv6apeitk768.png)
We have to find the maximum possible yield strength for a single crystal of this metal that is pulled in tension.
Yield strength,
![\sigma_(yield)=(\tau_(crit))/(cos\phi cos\gamma)](https://img.qammunity.org/2021/formulas/physics/college/uml4v2fh2um19x91cyzqsmg7ymri2q57st.png)
Minimum stress is necessary to introduce yielding when
![\phi=\gamma=45^(\circ)](https://img.qammunity.org/2021/formulas/physics/college/z3vfw8tkp48ycm8nwunmyh8b9qog4r3ckz.png)
![\sigma_(yield)=(\tau_(crit))/(cos45cos 45)=2\tau_(crit)](https://img.qammunity.org/2021/formulas/physics/college/47nxhqbfs4ie4unbl7yaldd8x4qsuhttbf.png)
Substitute the values
![\sigma_(yield)=2* 31=62 MPa](https://img.qammunity.org/2021/formulas/physics/college/28nxe4cn0ghey03ph4rm5xm4z7e10b2eb5.png)
Hence, the maximum possible yield strength for a single crystal of this metal that is pulled in tension=62 MPa