19.3k views
3 votes
Using the extended Euclidean algorithm, find the multiplicative inverse of a. 135 mod 61 b. 7465 mod 2464 c. 42828 mod 6407

User Fehguy
by
8.5k points

2 Answers

1 vote

Answer:

(a)1≡47 mod 61

(b)1≡2329 mod 2464

(c)Does not exist

Explanation:

The operation a(mod b) has an inverse if the the two integers (a,b)

are co-prime. i.e. their g.c.d is 1.

(a)Given 135 mod 61

We first reduce it to its lowest form.

135 mod 61=13 mod 61

61=13(4)+9 ==> 9=61-13(4)

13=9(1)+4 ==> 4=13-9(1)

9=4(2)+1 ==> 1=9-4(2)

4=1(4)

Next we rewrite 1 as a linear combination of 13 and 61.

1=9-4(2)

=9-(13-9(1))2

=9(3)-13(2)

=(61-13(4))(3)-13(2)

=61(3)-13(12)-13(2)

1=61(3)-13(14)

1=61(3)+13(-14)

1≡-14 mod 61≡(-14+61)mod 61

1≡47 mod 61

(b)7465 mod 2464

Reducing it to its lowest form

7465 mod 2464=73 mod 2464

2464=73(33)+55 ==>55=2464-73(33)

73= 55(1)+18 ==> 18=73-55(1)

55=18(3)+1 ==>1=55-18(3)

18=1(18)

Rewriting 1 as a linear combination of 73 and 2464.

1=55-18(3)

=2464-73(33)-(73-55(1))(3)

=2464-73(33)-73(3)+55(3)

=2464-73(36)+55(3)

=2464-73(36)+(2464-73(33))(3)

=2464-73(36)+2464(3)-73(99)

=2464(4)-73(135)

1=2464(4)+73(-135)

Therefore:

1≡-135 mod 2464

1≡(-135+2464)mod 2464

1≡2329 mod 2464

(c)42828 mod 6407

The two numbers are not co-prime. In fact their g.c.d is 43.

Therefore their inverse does not exist.

User Axel Andersen
by
8.7k points
3 votes

Answer:

The multiplicative inverse of

  • A) 135 mod 61 =
    135^(-1) = 17
  • B) 7465 mod 2464 =
    7465^(-1) = 2329
  • C) 42828 mod 6407 =
    inverse does not exist

Explanation:

A)


135 = 61 * 2 + 13\\\\61 = 13 * 4 + 9\\\\13 = 9 * 1 + 4\\\\1 = 9 -4 * 2\\\\= 9 - (13-9) * 2\\\\= 3 * 9 - 13 *2\\\\= 3 * (61-13*4) - 13 * 2\\\\= 3 * 61 - 14 * 13\\\\= 3 * 61 - 14 * (135-61*2)\\\\= 31 * 61 - 14 * 135\\\\ therefore, \\\\1 = 31*61-14*135\\\\1 = -14*135\\\\1 = 17*135\\\\135^(-1) = 17

B)


7465 = 2464*3+73\\\\2464 = 73*33+55\\\\73 = 55*1+18\\\\55 = 18*3+1\\\\1 = 55-18*3\\\\1 = 55-(73-55)*3\\\\1 = 4*55-73*3\\\\1 = 4*(2464-73*33)-73*3\\\\1 = 4*2464-135*73\\\\1 = 4*2464-135*(7465-2464*3)\\\\1 = 4*2464-135*7465+135*2464*3\\\\1 = 2464*(4+135*3)-135*7465\\\\1 = -135*7465\\\\1 = 2329*7465\\\\7465^(-1) = 2329

C)
42828 = 6*6407+4386\\\\6407 = 1*4386+2021\\\\4386 = 2*2021+344\\\\2021 = 5*344+301\\\\344 = 301*1+43\\\\301 = 7*43+0

inverse does not exist

User Simmer
by
8.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories