Answer:
1.932 days (or approximatelly 1 day, 22 hours and 22 minutes)
Explanation:
The inicial concentration is 60,000, and this concentration triples every 4 days, so we can write the equation:
P = Po * r^t
where P is the final concentration after t periods of 4 days, Po is the inicial concentration and r is the ratio that the concentration increases (r = 3)
Then, we have that:
102000 = 60000 * 3^t
3^t = 102/60 = 1.7
log(3^t) = log(1.7)
t*log(3) = log(1.7)
t = log(1.7)/log(3) = 0.483
so the number of days that will take is 4*0.483 = 1.932 days (or approximatelly 1 day, 22 hours and 22 minutes)