35.6k views
2 votes
Un jugador de golf lanza una pelota desde el suelo con un ángulo de 60º con respecto al horizonte y con una velocidad de 60 m/s. Calcula la velocidad de la pelota en el punto más alto de la trayectoria, la altura máxima alcanzada y el alcance máximo.

User ViG
by
5.8k points

1 Answer

0 votes

Answer:

Vy = 0

y(max) = 137,76 m

x(max) = 318 m

Step-by-step explanation:

We are dealing with a projectile movement

And from problem statement we know:

θ = 60⁰ then sin θ = sin 60⁰ = √3/2 and cos 60⁰ = 1/2 and g = 9.8 m/sec²

V₀ = 60 m/sec

V₀x = V₀ *cosθ Vx = V₀x Vx = Constant then Vx = V₀ *cosθ

Then Vx = 60* 1/2 Vx = 30 m/sec

V₀y = V₀ *sinθ ⇒ V₀y =60*√3/2 ⇒ V₀y = = 30*√3 m/sec

Vy = V₀y * sin θ - g*t

When Vy = 0 (maximum height point) we are half of the way for the ball to hit the ground, then

Vy = 0 ⇒ V₀y - g*t = 0 ⇒ 30*√3 (m /sec) = 9,8 (m/sec²)* t

t = 30*√3/9.8 t = 5.30 sec

y(max) = y₀ + V₀y*t - 1/2 * g*t²

By substitution:

y (max) = 0 + 30*√3 * 5.30 - 0,5* 9.8* (5.3)²

y(max) = 275,40 - 137,64

y(max) = 137,76 m

And finally x(max)

x(max) = Vx *t = 30* 2*5,3

x(max) = 318 m

User Osman Mamun
by
6.3k points