35.7k views
2 votes
How many solutions does the equation sin(5x) = 1/2 have on the interval (0, 2PI]

1 Answer

7 votes

Answer:

Explanation:

Given the equation

Sin(5x) = ½

5x = arcSin(½)

5x = 30°

Then,

The general formula for sin is

5θ = n180 + (-1)ⁿθ

Divide through by 5

θ = n•36 + (-1)ⁿ30/5

θ = 36n + (-1)ⁿ6

The range of the solution is

0<θ<2π I.e 0<θ<360

First solution

When n = 0

θ = 36n + (-1)ⁿθ

θ = 0×36 + (-1)^0×6

θ = 6°

When n = 1

θ = 36n + (-1)ⁿ6

θ = 36-6

θ = 30°

When n = 2

θ = 36n + (-1)ⁿ6

θ = 36×2 + 6

θ = 78°

When n =3

θ = 36n + (-1)ⁿ6

θ = 36×3 - 6

θ = 102°

When n=4

θ = 36n + (-1)ⁿ6

θ = 36×4 + 6

θ = 150

When n =5

θ = 36n + (-1)ⁿ6

θ = 36×5 - 6

θ = 174°

When n = 6

θ = 36n+ (-1)ⁿ6

θ = 36×6 + 6

θ = 222°

When n = 7

θ = 36n + (-1)ⁿ6

θ = 36×7 - 6

θ = 246°

When n =8

θ = 36n + (-1)ⁿ6

θ = 36×8 + 6

θ = 294°

When n =9

θ = 36n + (-1)ⁿ6

θ = 36×9 - 6

θ = 318°

When n =10

θ = 36n + (-1)ⁿ6

θ = 36×10 + 6

θ = 366°

When n = 10 is out of range of θ

Then, the solution is from n =0 to n=9

So the equation have 10 solutions in the range 0<θ<2π

User Tmarsh
by
3.8k points