177k views
1 vote
Help I can't find the answer

Find the exact values of sin θ/2 and cos θ/2 for sin θ = 2/7 on the interval 0° ≤ θ ≤ 90° .

User Hans Z
by
6.3k points

1 Answer

3 votes

For angles
\theta between 0º and 90º, we know
\sin\theta and
\cos\theta are both positive.

Then
\frac\theta2 falls between 0º and 45º, so both
\sin\frac\theta2 and
\cos\frac\theta2 are also positive.

Recall the double angle identities,


\sin^2x=\frac{1-\cos2x}2\implies\sin^2\frac\theta2=\frac{1-\cos\theta}2


\cos^2x=\frac{1+\cos2x}2\implies\cos^2\frac\theta2=\frac{1+\cos\theta}2

We know sine and cosine should be positive, so taking the square root of both sides gives us


\sin\frac\theta2=\sqrt{\frac{1-\cos\theta}2}


\cos\frac\theta2=\sqrt{\frac{1+\cos\theta}2}

Also recall the Pythagorean identity,


\cos^2x=1-\sin^2x\implies\cos\theta=√(1-\sin^2\theta)

Then


\cos\theta=√(1-\left(\frac27\right)^2)=\frac{3\sqrt5}7

and from here we get


\sin\frac\theta2=\sqrt{(7-3\sqrt5)/(14)}


\cos\frac\theta2=\sqrt{(7+3\sqrt5)/(14)}

User Dotrinh DM
by
6.0k points