Answer:
![a.\ \ \ \mu_T=5345, \ \ \sigma_T=600](https://img.qammunity.org/2021/formulas/mathematics/middle-school/yk37l5ftg6i3q01dqzcms4qaf50iz4qrz0.png)
![b.\ \ K=$5,995](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5b5lbzmb93cmj0j0szty98dqz659b5353e.png)
![C.\ \ \mu_B=6360, \ median(B)=6360 ,\ \ \sigma_B=800](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gyf3z7x1nrtl09vu2olvu3u46b0g55tj8f.png)
Explanation:
The expense function is expressed as
where X is the weight of collected iron.
-This function is normal distributed as
,
![\mu_x=203, \sigma_x=40](https://img.qammunity.org/2021/formulas/mathematics/middle-school/q4mfigy0qcevy3tdsppsxm526780vaq0kb.png)
-We use the formula for normal distribution to calculate the mean as:
![=\mu_T=15\mu_x+2300,\ \mu_x=203\\\\=15* 203+2300\\\\=5345](https://img.qammunity.org/2021/formulas/mathematics/middle-school/dx7esh3j0bhnum7r735ti69t8b680bc5f6.png)
#We then calculate the standard deviation as:
![Var(T)=\sigma_T^2\\\\=15^2* \sigma_x^2\\\\=225* 40^2\\\\=360000\\\sigma_T=√(\sigma_T^2)\\\\\therefore \sigma_T=√(360000)=600](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ccq8aa25tm5841atr830kk9dklq0h26bav.png)
b. From a above, we know that the cost, T is normally distributed with mean=5345 and standard deviation=600,
![T\sim \mathcal{N}(5345,\,\ 600^2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/dirx18daua0dmgokyglxi0vso2izvh2mw1.png)
#Given a 13.8% chance that the total daily expense of the business is more than $K, we calculate K as:
![T \sim \mathcal{N}(5345,\,360000)\\\\\\\\Z=(T-5345)/(600) \sim \mathcal{N}(0,\,1)\\=P(T>K)=0.138\\\\\\P(T\leq K)=1-0.138=0.862\\\\P(Z\leq Z^*)=0.8620\\=>Z^*\approx 1.08935\\\\(T^*-5345)/(600)=1.08395\\\\T^*=1.08395* 600+5345\\\\=5995.37\approx5995](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gmyouic2g8q5ny2c00uz7psl17wgigavxg.png)
Hence, the value of K is approximately $5995
c. Now given that each kilo or iron collected can be sold for $35, the mean, sd and median of the daily profit is calculated as:
Let B be the profit made:
![B=35X-T\\\\=20X-2300](https://img.qammunity.org/2021/formulas/mathematics/middle-school/41au7ok95s7hu47tdwy1zwmcfse08p0c4w.png)
#Mean profit is calculated as:
![\mu_B=20\mu_x-2300, \ \mu_x=203\\\\=20* 203-2300\\\\=6360](https://img.qammunity.org/2021/formulas/mathematics/middle-school/zg6eila7pemcisrjyyev4jpt081p762bq7.png)
#In a normal distribution:
![mean=mode=median\\\\\\\therefore median(B)=6360](https://img.qammunity.org/2021/formulas/mathematics/middle-school/8fdrmoe6caz74sbdbk98unfgqixnjhhhk2.png)
#The standard deviation is calculated as:
![\sigma_B=√(\sigma_B^2)\\\\=√(20^2\sigma_x^2)\\\\=√(20^2* 40^2)\\\\=800\\\\\therefore \sigma_B=800](https://img.qammunity.org/2021/formulas/mathematics/middle-school/7nhlabokwxwrgtbxy7y77g7ddflvlfjh8k.png)
d. A government allowance is applicable if theres 10+% of a negative profit;
![B \sim \mathcal{N}(6360,\,\ 800^(2))\\\\\therefore Z=(B\leq -6360)/(800) \sim \mathcal{N}(0,1)\\\\P(Z\leq Z^*)=0.1, Z^*\approx-1.2816\\\\(B^*-6360)/(800)=-1.2816\\\\B^*=-1.2816* 800+6360\\\\=5334\\\\B=1-(5334.72)/(6360)=0.1612 \ or \ 16.12\%](https://img.qammunity.org/2021/formulas/mathematics/middle-school/8w0jzf6w8s4h429q3zhosyx1o9qsr1m76c.png)
16.2%>10%.
Hence, he can apply for government allowance.