317,573 views
22 votes
22 votes
Write an equation in standard form of the hyperbola described.

Focus (4, 0); vertex (2, 0); center (0, 0)

User Junichiro
by
3.0k points

1 Answer

13 votes
13 votes

Check the picture below, so the hyperbola looks more or less like so, so let's find the length of the conjugate axis, or namely let's find the "b" component.


\textit{hyperbolas, horizontal traverse axis } \\\\ \cfrac{(x- h)^2}{ a^2}-\cfrac{(y- k)^2}{ b^2}=1 \qquad \begin{cases} center\ ( h, k)\\ vertices\ ( h\pm a, k)\\ c=\textit{distance from}\\ \qquad \textit{center to foci}\\ \qquad √( a ^2 + b ^2) \end{cases} \\\\[-0.35em] ~\dotfill


\begin{cases} h=0\\ k=0\\ a=2\\ c=4 \end{cases}\implies \cfrac{(x-0)^2}{2^2}-\cfrac{(y-0)^2}{b^2} \\\\\\ c^2=a^2+b^2\implies 4^2=2^2+b^2\implies 16=4+b^2\implies \underline{12=b^2} \\\\\\ \cfrac{(x-0)^2}{2^2}-\cfrac{(y-0)^2}{12}\implies \boxed{\cfrac{x^2}{4}-\cfrac{y^2}{12}}

Write an equation in standard form of the hyperbola described. Focus (4, 0); vertex-example-1
User Bla
by
2.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.