Answer:
All trigonometric Ratios are
,
,
![CosA= (AC)/(AB)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4c1fx8jc87gvaxeajgmp3m01214f7ka222.png)
And
.
Explanation:
Given that,
A right angle triangle ΔABC, ∠C =90°.
Diagram of the given scenario shown below,
In triangle ΔABC :-
![Hypotenuse = AB\\Base = CB\\Perpendicular = AC](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mzka1qyrys0r6dmlpil1vr0t4gfv2l4ho8.png)
So,
![Sin\theta = (perpendicular)/(hypotenuse)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qmmpifoqze2fyy99yjtl24d6z7b6a9sedm.png)
![SinB = (AC)/(AB)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/h6445g3g8n4t8o070tpi17lpi2q5ywrowe.png)
Now, for ∠A the dimensions of trigonometric ratios will be changed.
Here the base for ∠A is AC , perpendicular side is CB and hypotenuse will be same for all ratios.
![SinA= (CB)/(AB)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/vnegjr6a68u4hp2i2n55v2o3pq1wt8gdwu.png)
Again,
![Cos\theta= (base)/(hypotenuse)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ww4wmryaigqdoy7vzru4ifjv79xw78po0f.png)
Then,
![CosA= (AC)/(AB)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4c1fx8jc87gvaxeajgmp3m01214f7ka222.png)
And
.
Hence,
All trigonometric Ratios are
,
,
![CosA= (AC)/(AB)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4c1fx8jc87gvaxeajgmp3m01214f7ka222.png)
And
.