37.4k views
5 votes
Write an equation in standard form of the hyperbola described.

Focus (4, 0); vertex (2, 0); center (0, 0)

User Anomitra
by
4.4k points

1 Answer

5 votes

Check the picture below, so the hyperbola looks more or less like so, so let's find the length of the conjugate axis, or namely let's find the "b" component.


\textit{hyperbolas, horizontal traverse axis } \\\\ \cfrac{(x- h)^2}{ a^2}-\cfrac{(y- k)^2}{ b^2}=1 \qquad \begin{cases} center\ ( h, k)\\ vertices\ ( h\pm a, k)\\ c=\textit{distance from}\\ \qquad \textit{center to foci}\\ \qquad √( a ^2 + b ^2) \end{cases} \\\\[-0.35em] ~\dotfill


\begin{cases} h=0\\ k=0\\ a=2\\ c=4 \end{cases}\implies \cfrac{(x-0)^2}{2^2}-\cfrac{(y-0)^2}{b^2} \\\\\\ c^2=a^2+b^2\implies 4^2=2^2+b^2\implies 16=4+b^2\implies \underline{12=b^2} \\\\\\ \cfrac{(x-0)^2}{2^2}-\cfrac{(y-0)^2}{12}\implies \boxed{\cfrac{x^2}{4}-\cfrac{y^2}{12}}

Write an equation in standard form of the hyperbola described. Focus (4, 0); vertex-example-1
User Wu Yongzheng
by
5.4k points