Answer:
![f(x) = -x^2 - 2x + 8](https://img.qammunity.org/2023/formulas/mathematics/college/5hr9ctqgev5qm5ot1hlc7s5hetnbeox59m.png)
y-intercept is when x = 0:
![\implies f(0) = -(0)^2 - 2(0) + 8=8](https://img.qammunity.org/2023/formulas/mathematics/college/6m08n7ukkatgjb442lxqc5g3cm7ipshwjo.png)
So the y-intercept is (0, 8)
x-intercepts are when f(x) = 0:
![\implies f(x)=0](https://img.qammunity.org/2023/formulas/mathematics/college/y8dbiiuqecj5hijf80zxqkkymr7agul0nz.png)
![\implies -x^2 - 2x + 8=0](https://img.qammunity.org/2023/formulas/mathematics/college/144prrzehj4uxagqml9nz4delfaenh26vq.png)
![\implies x^2 + 2x - 8=0](https://img.qammunity.org/2023/formulas/mathematics/college/1gtyyx17oz6d9azmwfx1gakmuaewqqgysl.png)
![\implies x^2 - 2x + 4x - 8=0](https://img.qammunity.org/2023/formulas/mathematics/college/1z1f46swkkxef5wwzmqagujl4blwm5av3j.png)
![\implies x(x - 2) + 4(x-2)=0](https://img.qammunity.org/2023/formulas/mathematics/college/dcvbuxuhh2qekw6a7v3oxhgs50kwoqt0cj.png)
![\implies (x+4)(x - 2)=0](https://img.qammunity.org/2023/formulas/mathematics/college/ed3jc9e37zhwmiwr6cdaz1ce30i6bva8oq.png)
Therefore:
![\implies (x+4)=0 \implies x=-4](https://img.qammunity.org/2023/formulas/mathematics/college/gf3hq9enlyuq37iz5gs5vt9cnut4m1omzb.png)
![\implies (x-2)=0 \implies x=2](https://img.qammunity.org/2023/formulas/mathematics/college/2i6o9qa54gqw4nwuz6rsr5rb4luadfmkwe.png)
So the x-intercepts are (-4, 0) and (2, 0)
The vertex is the turning point of the parabola. The x-value of the vertex is the x-value between the 2 zeros (x-intercepts).
Therefore, the x-value of the vertex is
![\sf (x_1+x_2)/(2)=(-4+2)/(2)=-1](https://img.qammunity.org/2023/formulas/mathematics/college/wkazw282o4o6iff49mkwxy10qbhkwzxaso.png)
Substituting x = -1 into the function:
![\implies f(-1) = -(-1)^2 - 2(-1) + 8=9](https://img.qammunity.org/2023/formulas/mathematics/college/klmh76vyqopt4v7eb4fx0qs3zu9za87xy8.png)
So the vertex is (-1, 9)
The domain is the input values, so x = all real numbers.
The range is the output values, so the range is
![f(x)\leq 9](https://img.qammunity.org/2023/formulas/mathematics/college/lul8wwi3dtp0o7ygyaltu0k4fjqj3hd1gf.png)
Therefore, (-4, 0), (-1, 9), (0, 8) and (2, 0) are solutions of the function, HOWEVER they are not ALL the solutions.
All solutions of the function are:
for all real numbers of x