Answer:
![a. \ \ \ P_l=954 \ ft\\\\b.\ A_s=944 \ ft^2](https://img.qammunity.org/2021/formulas/mathematics/college/z28l7t1bd0lzcwpjtt37dg8bx47ue7v9yw.png)
Explanation:
a. Given that the area's are in the ratios 16:81.
-Area is two-dimensional while perimeter is one-dimensional
=>The perimeter's of the two polygons will vary in a ratio equal to the square root of their area's ratio:
![P_s:P_b=√(A_s):√(A_b)\\\\=√(16):√(81)\\\\=4:9](https://img.qammunity.org/2021/formulas/mathematics/college/frz0ant1j4xalho0x50hqgf1rkssd31lvg.png)
We use the perimeter ratio to find the perimeter of the larger polygon:
![(P_s)/(P_l)=(4)/(9)=(424)/(P_l)\\\\P_l=(424* 9)/4\\\\=954\ ft](https://img.qammunity.org/2021/formulas/mathematics/college/g3xthrimuezdybxqwey10lnr7p8slds88d.png)
Hence, the perimeter of the larger polygon is 954 ft
b -Given the area of the larger polygon is 4779 ft2, the smaller polygon can be determined using the area ratio 16:81
![(A_s)/(A_l)=(A_s)/(4779)=(16)/(81)\\\\A_s=(4779* 16)/(81)\\\\=944](https://img.qammunity.org/2021/formulas/mathematics/college/95qfwu0dj6adxvgaafqnmr4uv0zb9qgr0r.png)
Hence, area of the smaller polygon is
![944 \ ft^2](https://img.qammunity.org/2021/formulas/mathematics/college/96fnjf489noisrr3j7uja6yti73u5ehsac.png)