131,854 views
45 votes
45 votes
Find y.
Round to the nearest tenth:
290
500 ft
y
X
y = [ ? ]ft

Find y. Round to the nearest tenth: 290 500 ft y X y = [ ? ]ft-example-1
User Abdul Alim Shakir
by
3.2k points

2 Answers

24 votes
24 votes

Answer:

y = 242.4 ft (nearest tenth)

Explanation:

Using the Alternate Interior Angle Theorem
the angle opposite side
y is 29°

Using the sine trig ratio:


\sf sin(\theta)=(O)/(H)

where:


  • \theta is the angle
  • O is the side opposite the angle
  • H is the hypotenuse

Given:


  • \theta = 29°
  • O =
    y
  • H = 500 ft

Substitute given values and solve for y:


\sf \implies sin(29)=(y)/(500)


\sf \implies y=500sin(29)


\sf \implies y=242.2\:ft\:(nearest\:tenth)

User Bellum
by
3.1k points
22 votes
22 votes

Answer:

  • y = 242.4
  • x = 437.3

First find the inner angle:

  • 90° - 29°
  • 61°

[ given hypotenuse = 500 ft ]

using sine rule:


\sf sin(x)= (opposite)/(hypotensue)


\hookrightarrow \sf sin(61)= (x)/(500)


\hookrightarrow \sf x=sin(61)*500


\hookrightarrow \sf x=437.3

using pythagoras theorem:

  • a² + b² = c²
  • y² + (437.3)² = 500²
  • y = √58760.1
  • y = 242.4
User Terminus
by
3.1k points