Answer:
![\displaystyle y'' = (-75)/(16y^7)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nousjhs2ezfgoixgqjvy1mafhw3aodvv4t.png)
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2021/formulas/mathematics/college/bz16ipe6p14y3f6abzxt2zy0j41tg530u9.png)
Derivative Property [Addition/Subtraction]:
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2021/formulas/mathematics/college/ljowxevzhh8dk8mfdheam579ywk5jvteyi.png)
Implicit Differentiation
Explanation:
Step 1: Define
Identify
![\displaystyle y^4 + 5x = 21](https://img.qammunity.org/2021/formulas/mathematics/middle-school/npcrvd59p38nt9w81ni6u5qm94r8hv9gkd.png)
Step 2: Find 1st Derivative
- Differentiate [Basic Power Rule, Chain Rule, Derivative Properties]:
![\displaystyle 4y^3y' + 5 = 0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/iue5k50kme4ly9xk64js7urvagbhm5hit2.png)
- Isolate y' term:
![\displaystyle 4y^3y' = -5](https://img.qammunity.org/2021/formulas/mathematics/middle-school/vfhv7uqth1gbst87t5hmorzfrw51nmxsmq.png)
- Isolate y':
![\displaystyle y' = (-5)/(4y^3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xa98x9e4e1cb9frs29z6wouquwrlq9zg4j.png)
Step 3: Find 2nd Derivative
- Rewrite:
![\displaystyle y' = (-5)/(4)y^(-3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/7qf412frpa3ilh0an0x2c7efygk4l577q8.png)
- Differentiation [Basic Power Rule, Chain Rule, Derivative Properties]:
![\displaystyle y'' = (15)/(4)y^(-4)y'](https://img.qammunity.org/2021/formulas/mathematics/middle-school/az6fqyj6xrtzosm2rfpw25ukzr07i6h0en.png)
- Rewrite:
![\displaystyle y'' = (15)/(4y^4)y'](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ei3svob552x5p0xv33kffiy026ht3aey2z.png)
- Substitute in y':
![\displaystyle y'' = (15)/(4y^4) \bigg( (-5)/(4y^3) \bigg)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/sf9u39ccn4sdtlcdeo99oa6jkx1dvy1zvv.png)
- Simplify:
![\displaystyle y'' = (-75)/(16y^7)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nousjhs2ezfgoixgqjvy1mafhw3aodvv4t.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation