Answer:
a) P=0.353
b) P=0.950
Explanation:
If the time between calls is exponentially distributed with a mean rate of t minutes, we can say that the expected number of calls per unit of time follows a Poisson distribution with parameter 1/t.
In this case, the parameter for the Poisson distribution is:
![r=(1)/(10)=0.1\, min^(-1)](https://img.qammunity.org/2021/formulas/mathematics/college/cebq2e3x9t4cv46itwxurk9kex4droi60w.png)
The Poisson distribution for k amount of calls in a period ot t minutes is described as:
![P(k,t)=((rt)^ke^(-rt))/(k!)](https://img.qammunity.org/2021/formulas/mathematics/college/w7uljlgq3sekcclfe8uhitytctg5by0ou6.png)
The probability of having more than 3 calls in on-half hour (30 min) is:
![P(k>3;t=30)=1-(P(0)+P(1)+P(2)+P(3))\\\\\\ \lambda=rt=0.1*30=3\\\\P(0)=((3)^0e^(-3))/(0!) =(1*0.0498)/(1)=0.050\\\\P(1)=((3)^1e^(-3))/(1!)=(3*0.0498)/(1) = 0.149\\\\ P(2)=((3)^2e^(-3))/(2!)=(9*0.0498)/(2) = 0.224\\\\P(3)=((3)^3e^(-3))/(3!)=(27*0.0498)/(6) =0.224\\\\\\ P(k>3)=1-(0.050+0.149+0.224+0.224)\\\\P(k>3)=1-0.647=0.353](https://img.qammunity.org/2021/formulas/mathematics/college/1b2oxuvgv3552xh5izqmo9ktu0yi31vg2q.png)
b) These distribution are memory-less, so they are independent of the past results.
We can calculate then the probability of having at least on call in the next half hour as:
![P(k>1;t=30)=1-P(0)\\\\\\ \lambda=rt=0.1*30=3\\\\P(0)=((3)^0e^(-3))/(0!) =(1*0.0498)/(1)=0.050\\\\\\ P(k>1)=1-0.050=0.950](https://img.qammunity.org/2021/formulas/mathematics/college/hzvyu7pczcp53r1ztge4z0vgnrkhf6cza7.png)