40.3k views
0 votes
For the following pairs of sets, state which of these statements is true: "A is a subset of B", "B is a subset of A", "A is a proper subset of B", "B is a proper subset of A". It’s possible for multiple statements to be true, or none of them. a. A = {3, +√5 2 − 4 2, √27 3 }, B = {3,{3},{3}} b. A = {{1, 2},{2, 3}},B = {{1, 2, 3}} c. A = {1, 2, 3},B = {{1},{2},{3}} d. A = {√16,{4}} , B = {4}

User Errieman
by
8.8k points

1 Answer

0 votes

Answer:

a. A = {3, +√5 2 − 4 2, √27 3 }, B = {3,{3},{3}} (None of them)

as there are no elements of either sets, those are completely present in other set.

b. A = {{1, 2},{2, 3}},B = {{1, 2, 3}} (None of them)

as there are no elements of either sets, those are completely present in other set.

c. A = {1, 2, 3},B = {{1},{2},{3}} (None of them)

as there are no elements of either sets, those are completely present in other set.

d. A = {√16,{4}} , B = {4} (B is a proper subset of A)

All elements of B i.e. 4 is present in set A with an additional element also there in A i.e. {4}

User Manuel Castro
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories