Given that the two functions are
and
![g(x)=-9x^2-2x+1](https://img.qammunity.org/2021/formulas/mathematics/high-school/q7g8u0l5opyeorppoze29j2b7chw6usdka.png)
We need to determine the value of
![(f \circ g)(-6)](https://img.qammunity.org/2021/formulas/mathematics/high-school/p37hi59myzmkkgslh6fj3tr43ba8u5b5o6.png)
The value of
:
The value of
can be determined using the formula,
![(f \circ g)(x)=f[g(x)]](https://img.qammunity.org/2021/formulas/mathematics/high-school/hc65fx601ckp75xr4qftkxf11k7eqtpy7p.png)
Substituting
in the above formula, we get;
![(f \circ g)(x)=f[-9x^2-2x+1]](https://img.qammunity.org/2021/formulas/mathematics/high-school/cqm1qtna1d7fd5e4r1q05sabf9mihj068j.png)
Now, substituting
in the function
, we get;
![(f \circ g)(x)=9(-9x^2-2x+1)+2](https://img.qammunity.org/2021/formulas/mathematics/high-school/h1yr8lp0idg1udlr3qbro80l2lzew7v061.png)
![(f \circ g)(x)=-81x^2-18x+9+2](https://img.qammunity.org/2021/formulas/mathematics/high-school/q6ju8if8x8u4sv5hx7wsdcpu8fwwm3f4vj.png)
![(f \circ g)(x)=-81x^2-18x+11](https://img.qammunity.org/2021/formulas/mathematics/high-school/63d3xk7w3wu1bgzarsn6lfqgo9g9cbgwwr.png)
Thus, the value of
is
![(f \circ g)(x)=-81x^2-18x+11](https://img.qammunity.org/2021/formulas/mathematics/high-school/63d3xk7w3wu1bgzarsn6lfqgo9g9cbgwwr.png)
The value of
:
The value of
can be determined by substituting x = -6 in the function
![(f \circ g)(x)=-81x^2-18x+11](https://img.qammunity.org/2021/formulas/mathematics/high-school/63d3xk7w3wu1bgzarsn6lfqgo9g9cbgwwr.png)
Thus, we have;
![(f \circ g)(-6)=-81(-6)^2-18(-6)+11](https://img.qammunity.org/2021/formulas/mathematics/high-school/9oj7goxuym9sbbu93bdaaxbax0pby5ntoh.png)
![(f \circ g)(-6)=-81(36)-18(-6)+11](https://img.qammunity.org/2021/formulas/mathematics/high-school/dvj2mvi7oov94pwsrmrgdbjn7bmu8b0f7o.png)
![(f \circ g)(-6)=-2916+108+11](https://img.qammunity.org/2021/formulas/mathematics/high-school/fp1testj4zefnvxgu124s5xfb3ub719pmj.png)
![(f \circ g)(-6)=-2797](https://img.qammunity.org/2021/formulas/mathematics/high-school/b8axtt1bjnovbek44k7pzaf3kahunn8a0v.png)
Thus, the value of
is -2797
Hence, Option B is the correct answer.