230k views
4 votes
Use the method of variation of parameters to find a particular solution of the given differential equation. Then check your answer by using the method of undetermined coefficients. y'' − 5y' + 6y = 2et

User CKM
by
4.2k points

1 Answer

3 votes

Answer:

Therefore the complete primitive is


y=c_1 e^(2y)+c_2e^(3t)+e^(t)

Therefore the general solution is


y=c_1e^(2t)+c_2e^(3t)+e^t

Explanation:

Given Differential equation is


y''-5y'+6y=2e^t

Method of variation of parameters:

Let
y=e^(mt) be a trial solution.


y'= me^(mt)

and
y''= m^2e^(mt)

Then the auxiliary equation is


m^2e^(mt)-5me^(mt)+6e^(mt)=0


\Rightarrow m^2-5m+6=0


\Rightarrow m^2 -3m -2m +6=0


\Rightarrow m(m -3) -2(m -3)=0


\Rightarrow (m-3)(m-2)=0


\Rightarrow m=2,3

∴The complementary function is
C_1e^(2t)+C_2e^(3t)

To find P.I

First we show that
e^(2t) and
e^(3t) are linearly independent solution.

Let
y_1=e^(2t) and
y_2= e^(3t)

The Wronskian of
y_1 and
y_2 is
\left|\begin{array}{cc}y_1&y_2\\y'_1&y'_2\end{array}\right|


=\left|\begin{array}{cc}e^(2t)&e^(3t)\\2e^(2t)&3e^(3t)\end{array}\right|


=e^(2t).3e^(3t)-e^(2t).2e^(3t)


=e^(5t) ≠ 0


y_1 and
y_2 are linearly independent.

Let the particular solution is


y_p=v_1(t)e^(2t)+v_2(t)e^(3t)

Then,


Dy_p= 2v_1(t)e^(2t)+v'_1(t)e^(2t)+3v_2(t)e^(3t)+v'_2(t)e^(3t)

Choose
v_1(t) and
v_2(t) such that


v'_1(t)e^(2t)+v'_2(t)e^(3t)=0 .......(1)

So that


Dy_p= 2v_1(t)e^(2t)+3v_2(t)e^(3t)


D^2y_p= 4v_1(t)e^(2t)+9v_2(t)e^(3t)+ 2v'_1(t)e^(2t)+3v'_2(t)e^(3t)

Now


4v_1(t)e^(2t)+9v_2(t)e^(3t)+ 2v'_1(t)e^(2t)+3v'_2(t)e^(3t)-5[2v_1(t)e^(2t)+3v_2(t)e^(3t)] +6[v_1e^(2t)+v_2e^(3t)]=2e^t


\Rightarrow 2v'_1(t)e^(2t)+3v'_2(t)e^(3t)=2e^t .......(2)

Solving (1) and (2) we get


v'_2=2 e^(-2t) and
v'_1(t)=-2e^(-t)

Hence


v_1(t)=\int (-2e^(-t)) dt=2e^(-t)

and
v_2=\int 2e^(-2t)dt =-e^(-2t)

Therefore
y_p=(2e^(-t)) e^(2t)-e^(-2t).e^(3t)


=2e^t-e^t


=e^t

Therefore the complete primitive is


y=c_1 e^(2y)+c_2e^(3t)+ e^(t)

Undermined coefficients:

∴The complementary function is
C_1e^(2t)+C_2e^(3t)

The particular solution is
y_p=Ae^t

Then,


Dy_p= Ae^t and
D^2y_p=Ae^t


\therefore Ae^t-5Ae^t+6Ae^t=2e^t


\Rightarrow 2Ae^t=2e^t


\Rightarrow A=1


\therefore y_p=e^t

Therefore the general solution is


y=c_1e^(2t)+c_2e^(3t)+e^t

User Vbandrade
by
4.1k points