Answer:
0.0707 radians
Explanation:
Given that:
The dimension of the rectangular box is:
length (l) = 20 inches
width (w) = 20 inches
height (h) = 2 inches
The length of the diagonal of the rectangular box is :
![D_1 = √( l^2+w^2+h^2)](https://img.qammunity.org/2021/formulas/mathematics/college/usw1xsut5v12b0ianfhhd7q9xbhi7qa3c3.png)
![D_1 = \sqrt {(20)^2+(20)^2+(2)^2}](https://img.qammunity.org/2021/formulas/mathematics/college/5aifynal2mxgg3jb26lrro76h2vfl3ihm9.png)
![D_1 = \sqrt {400+400+4}](https://img.qammunity.org/2021/formulas/mathematics/college/y5a6ikch2d19hhbke87f6jcdendlto7g6c.png)
![D_1 = \sqrt {804}](https://img.qammunity.org/2021/formulas/mathematics/college/az7pc420ed3znz6feq1pshcqjjep9eavsi.png)
![D_1 = 28.35](https://img.qammunity.org/2021/formulas/mathematics/college/pykc96o6jg3lkk4i4tlp0xtv47sh7svpw0.png)
The length of the diagonal of the base of the rectangular box is:
![D_2 = √(l^2+w^2)](https://img.qammunity.org/2021/formulas/mathematics/college/kixvqds23gv4ca12msp4rqiaexze15mj20.png)
![D_2 = √((20)^2+(20)^2)](https://img.qammunity.org/2021/formulas/mathematics/college/cybzjdrkppg9hnus4zqeuo0wb0y31sopps.png)
![D_2 = √(400+400)](https://img.qammunity.org/2021/formulas/mathematics/college/w35mvp9b67itaau2za3i3gb9tedzb05eyx.png)
![D_2 = √(800)](https://img.qammunity.org/2021/formulas/mathematics/college/khno18gk0u25chiyvg7iif2o96vrpqlvp5.png)
![D_2 = 28.28](https://img.qammunity.org/2021/formulas/mathematics/college/x32uoi4yanyc74lrfww9c1cbagjcwgy07f.png)
If we take a critical look at a rectangular box; we will realize that the diagonal of the base is the adjacent side & diagonal of the box is the hypotenuse of a triangle formed by the rectangular box.
Therefore, the angle between them is :
![Cos \theta = (Diagonal \ of \ the \ base \ )/(Diagonal \ of \ the \ box )](https://img.qammunity.org/2021/formulas/mathematics/college/s1irlfahwdpkb4ccx0vamhmzkpobh6e69p.png)
![Cos\ \theta = (D_2)/(D_1 )](https://img.qammunity.org/2021/formulas/mathematics/college/yolkepe4mbsqwgjgzw8p1cswo07h6jq8da.png)
![Cos\ \theta = (28.28)/(28.35 )](https://img.qammunity.org/2021/formulas/mathematics/college/zo1tpt9hidsp2zhzf3ny4xd0mkls55da34.png)
![Cos\ \theta = 0.9975](https://img.qammunity.org/2021/formulas/mathematics/college/mnwlqbnc7i00e9untlcf4c46izo9yx76vg.png)
![\theta = Cos^(-1) \ 0.9975](https://img.qammunity.org/2021/formulas/mathematics/college/39504eu5i1527iwgdv2rki846mf8w7bubb.png)
to radians
![\theta = 0.0707 \ radians](https://img.qammunity.org/2021/formulas/mathematics/college/xf3d02b3mplmtbd8zc2e51zjmpxwt68mmk.png)