Answer:
27.63 mph
Explanation:
First we find the distance, p between the Car and the house using Pythagoras theorem.
![p^2=x^2+y^2\\p^2=7^2+9^2\\p^2=49+81=130\\p=√(130) miles](https://img.qammunity.org/2021/formulas/mathematics/college/2wj03u9rhd2l0nrrrml89xtsoju0vf8k8y.png)
Taking derivatives of:
![p^2=x^2+y^2\\2p (dp)/(dt) =2x (dx)/(dt) + 2y (dy)/(dt)](https://img.qammunity.org/2021/formulas/mathematics/college/ehbcujfvytgw214q7tp0mj7nff38tb3saj.png)
Since the farmhouse does not move, its speed
![(dy)/(dt)=0](https://img.qammunity.org/2021/formulas/mathematics/college/o6uqrvztiyjpjgehd6li1q09cqr8axo3bk.png)
Therefore:
![2*√(130) *(dp)/(dt) =2*7*45 + 2y*0\\2*√(130) *(dp)/(dt)=630\\(dp)/(dt)=(630)/(2√(130))\\(dp)/(dt)=27.63 mph](https://img.qammunity.org/2021/formulas/mathematics/college/okj4ze9erp4rz269pyct8dymusja1ia2du.png)
The distance between the automobile and the farmhouse is increasing at a rate of 27.63mph.