Answer:
V = 48.4m/s, θ = 73.6° below the horizontal.
Step-by-step explanation:
Given h = 109.53m, x = range = 65m,
θ = 0°
This problem involves the concepts of projectile motion.
Let yo = h = 109.53m
y = final position on the y axis. = 0m (ground level)
y = yo + vosinθ – 1/2gt²
0 = 109.53 + vosin0° – 1/2×9.8×t²
0 = 109.53 – 4.9t²
4.9t² = 109.53
t² = 109.53/4.9 = 22.35
t = √22.35 = 4.73s
So it takes the ball t = 4.73 seconds to get to the ground from the launch point.
x = (vocosθ)×t
65 = (vocos0°)×4.73
65/4.73 = vo
Vo = 13.7m/s
Vx = Vox = Vocosθ = 13.7cos0° = 13.7m/s
Vy = Voy – gt = Vosinθ – gt
Vy = 13.7sin0° – 9.8×4.73 = –46.4m/s
V = √(Vy² + Vx²) = √(-46.4² + 13.7²)
V = 48.4m/s
θ = Tan-¹(vy/vx) = tan-¹(-46.4/13.7) = -73.6°
θ = 73.6° below the horizontal
V = 48.4m/s