Answer:
95% Confidence interval: (0.2291,0.3015)
Explanation:
We are given the following in the question:
Sample size, n = 418+151 = 569
Number of yellow peas, x = 151
![\hat{p} = (x)/(n) = (151)/(569) = 0.2653](https://img.qammunity.org/2021/formulas/mathematics/high-school/rgsog9z1730ccj6cv9ljsjjbchaxupim5e.png)
a) 95% Confidence interval:
![\hat{p}\pm z_(stat)\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}](https://img.qammunity.org/2021/formulas/mathematics/college/eswj2wmzjmoyqwjqkxj1suu8mlix7iu7oo.png)
![z_(critical)\text{ at}~\alpha_(0.05) = 1.96](https://img.qammunity.org/2021/formulas/mathematics/college/p18nw3z4xiccq4qlatlj3xw3assox3kax4.png)
Putting the values, we get:
![0.2653\pm 1.96(\sqrt{(0.2653(1-0.2653))/(569)}) = 0.2653\pm 0.0362\\\\=(0.2291,0.3015)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8yojnhqn8talbpnwmlhml0rrbvwdgr8jcc.png)
b) Interpretation of confidence interval
We are 95% confident that the proportion of yellow peas in the sample lies within the range (0.2291,0.3015)