Complete question:
A spring of negligible mass has force constant k = 1600 N/m. (a) How far must the spring be compressed for 3.20 J of potential energy to be stored in it? (b) You place the spring vertically with one end on the floor. You then drop a 1.40-kg book onto it from a height of 0.800 m above the top of the spring. Find the maximum distance the spring will be compressed.
Answer:
(a) 0.063 m
(b) 0.126 m
Step-by-step explanation:
Given;
force constant, K = 1600 N/m
Part (a)
Elastic potential energy is given as;
U = ¹/₂Kx²
where;
x is the extension in the spring
Part (b)
given;
mass of the book, m = 1.4 kg
height above the spring from which the book was dropped, h = 0.8 m
From the principle of conservation of energy;
Gravitational potential energy = Elastic potential energy
mgH = ¹/₂Kx²
H is the total vertical distance from floor to 0.8 m = maximum distance the spring will be compressed + h
let the maximum distance = A
mg(A+h) = ¹/₂KA²
1.4 x 9.8(A + 0.8) = ¹/₂ x 1600A²
13.72 (A + 0.8) = 800A²
13.72A + 10.976 = 800A²
800A² - 13.72A - 10.976 = 0
This is a quadratic equation, and we solve using formula method, where a = 800, b = - 13.72 and c = - 10.976
A = 0.126 m