Answer:
95% of confidence interval are (144.74 , 199.23)
Explanation:
given data 155 153 147 147 147 147 260 206 199 156
given sample n =10
![mean = ∑x / n = (155+ 153+ 147 +147+ 147= 147= 260+ 206 +199+ 156 )/(10)](https://img.qammunity.org/2021/formulas/mathematics/college/cp0kj6e8th2wnuqb5dm4eytk1z0vqrneoq.png)
mean = 171.7≅ 172
x x- mean (x-mean)^2
155 155-172= -17 289
153 153-172 = -19 361
147 147-172 = -25 625
147 147-172 = -25 625
147 147-172 = -25 625
147 147-172 = -25 625
260 260-172 = 88 7784
206 206-172 = 34 1156
199 199-172 = 27 729
156 156-172 = -16 256
∑ (x-mean)^2 = 13,075
Sample variance S^2 = ∑ (x-mean)^2 / n-1 = 13,075 / 10-1 =1452.77
sample standard deviation S = √variance = 38.11
95% confidence interval
The degrees of freedom = n-1 = 10-1 =9
The tabulated value 't' = 2.26 at '9' degrees of freedom at 95% level of significance
χ ± 2.26 S / √n
172 ± 2.26 (38.11)/√10
The intervals are (172 - 2.26 (38.11)/√10 , 172 + 2.26 (38.11)/√10)
( 172 - 27.236 , 172+27.236)
(144.74 , 199.23)
there fore the 95% of confidence interval are (144.74 , 199.23)