162k views
2 votes
How do you solve the equation |x^2-x+1|=3

User Rohan Veer
by
8.0k points

1 Answer

3 votes

Explanation:

Given


|x^2-x+1|=3


\mathrm{Apply\:absolute\:rule}:\quad \mathrm{If}\:|u|\:=\:a,\:a>0\:\mathrm{then}\:u\:=\:a\:\quad \mathrm{or}\quad \:u\:=\:-a


x^2-x+1=-3\quad \mathrm{or}\quad \:x^2-x+1=3

solving


x^2-x+1=-3


x^2-x+1+3=-3+3


x^2-x+4=0


\mathrm{Discriminant\:}\:x^2-x+4=0


\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:discriminant\:is\:}b^2-4ac


\mathrm{For\:}\quad a=1,\:b=-1,\:c=4\quad


b^2-4ac=\left(-1\right)^2-4\cdot \:\:1\cdot \:\:4

= 1 - 16

= -15


\mathrm{Discriminant\:\:cannot\:be\:negative\:for\:}x\in \mathbb{R}


\mathrm{The\:solution\:is}


\mathrm{No\:Solution\:for}\:x\in \mathbb{R}

similarly solving


x^2-x+1=3


x^2-x+1-3=3-3


x^2-x-2=0


\mathrm{Solve\:with\:the\:quadratic\:formula}


\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}


x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)


\mathrm{For\:}\quad a=1,\:b=-1,\:c=-2:\quad x_(1,\:2)=(-\left(-1\right)\pm √(\left(-1\right)^2-4\cdot \:1\left(-2\right)))/(2\cdot \:1)


x=(-\left(-1\right)+√(\left(-1\right)^2-4\cdot \:1\left(-2\right)))/(2\cdot \:1)=2


x=(-\left(-1\right)-√(\left(-1\right)^2-4\cdot \:1\left(-2\right)))/(2\cdot \:1)= -1


\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}


x=2,\:x=-1

so


\mathrm{Combine\:Solutions:}


\mathrm{No\:Solution}\quad \mathrm{or}\quad \left(x=-1\quad \mathrm{or}\quad \:x=2\right)


x=-1\quad \mathrm{or}\quad \:x=2

User Hunterjrj
by
7.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories