131k views
2 votes
Given: cosθ = 20/29
Find: sin2θ

User Lfergon
by
5.6k points

2 Answers

5 votes

Answer:

0.998

Explanation:

cos θ = 20/29

sin θ = √29² - 20² / 29 = 21 / 29

sin 2θ = 2 sinθ cosθ = 2 x 21/29 x 20/29 = 0.998

User Jawan
by
6.4k points
7 votes

Answer:

Sin2θ =
(840)/(841)

Explanation:

Let's take a right angle triangle ABC.

From triangle ABC,

Cosθ =
(AB)/(BC) = (20)/(29) (Given)

By Pythagoras theorem,


(AC)^(2) + (AB)^(2) = (BC)^(2)


(AC)^(2) = (BC)^(2) - (AB)^(2)


(AC)^(2) = 29^(2) -20^(2)


(AC)^(2) = 841 - 400 = 441\\AC = √(441) = 21

So, Sinθ =
(AC)/(BC) = (21)/(29)

Sin2θ = 2 x Sinθ x Cosθ

=
2*(21)/(29) *(20)/(29)

=
(840)/(841)

Given: cosθ = 20/29 Find: sin2θ-example-1
User Muhand Jumah
by
6.2k points