204k views
4 votes
determine the size of PQ where the position vectors of points P and Q are 2i- 3j + 4k and 3i -7j +12k respectively​

User BradVoy
by
5.4k points

1 Answer

6 votes

Answer:

The magnitude or size of the vector
{\displaystyle {\overrightarrow {PQ}}} is:
√(165)

Explanation:

As the position vectors of points P and Q are
2i- 3j + 4k and
3i -7j +12k

So the given vectors

  • P(2, -3, 4)
  • Q(3, -7, 12)


{\displaystyle {\overrightarrow {PQ}}}=(3-2)i+(-7-(-3)j+(12-4)k


{\displaystyle {\overrightarrow {PQ}}}=i+10j+8k


\mathrm{Computing\:the\:Euclidean\:Length\:of\:a\:vector}:\quad \left|\left(x_1\:,\:\:\ldots \:,\:\:x_n\right)\right|=\sqrtx_i\right


{\displaystyle {\overrightarrow {PQ}}}
=√(1^2+10^2+8^2)


=√(1+100+64)


=√(165)

Therefore, the magnitude or size of the vector
{\displaystyle {\overrightarrow {PQ}}} is:
√(165)

User David Choweller
by
4.8k points