209k views
8 votes
HELP ME PLEASE!!

Solve the simultaneous equations.
x + 2y = 13
x + 5y = 28

x =
y= ​

User Avicohen
by
3.1k points

2 Answers

8 votes
  • x+2y=13--(1)
  • x+5y=28--(2)

Let's use elimination method

  • Subtract eq(2) from eq(1)

We get


\\ \rm\Rrightarrow 2y-5y=13-28


\\ \rm\Rrightarrow -3y=-15


\\ \rm\Rrightarrow y=(-15)/(-3)


\\ \rm\Rrightarrow y=5

Putting on eq(1)


\\ \rm\Rrightarrow x+2y=13


\\ \rm\Rrightarrow x+2(5)=13


\\ \rm\Rrightarrow x+10=13


\\ \rm\Rrightarrow x=13-10


\\ \rm\Rrightarrow x=3

  • (x,y)=(3,5)


\LARGE{\underbrace{\underline{\rm{Verification:-}}}}


\\ \rm\Rrightarrow x+2y=13


\\ \rm\Rrightarrow 3+2(5)=13


\\ \rm\Rrightarrow 3+10=13


\\ \rm\Rrightarrow 13=13

And


\\ \rm\Rrightarrow x+5y=28


\\ \rm\Rrightarrow 3+5(5)=28


\\ \rm\Rrightarrow 3+25=28


\\ \rm\Rrightarrow 28=28

Hence verified!

User Ayman Khamouma
by
3.4k points
2 votes


\bold{\huge{\underline{ Solution }}}

Given :-

  • Here, We have given two equations that is ,

  • \sf{ x + 2y = 13\:\: and\:\: x + 5y = 28}

To Find :-

  • We have to find the value of x and y.

Concept used :-

  • Linear equations are those equations which having highest power of degree as 1 .
  • Linear equations can be solved by subsitute method, elimination method and cross multiplication method.
  • Here, I have used substitution method to make calculation easier.
  • In subsitute method, you have to subsitute the value of one variable of eq(1) in eq(2) .

Let's Begin :-

Here,

  • We have two equations, let consider these two equations as eq(1) and eq(2) that is,


\sf{ x + 2y = 13 ...eq(1)}


\sf{ x + 5y = 28 ...eq(2)}

By solving eq(1) :-


\sf{ x + 2y = 13 }


\sf{ x = 13 - 2y ...eq(3)}

Subsitute eq(3) in eq(2) :-


\sf{ (13 - 2y) + 5y = 28 }


\sf{ 13 - 2y + 5y = 28 }


\sf{ 13 + 3y = 28 }


\sf{ 3y = 28 - 13 }


\sf{ 3y = 28 - 13 }


\sf{ 3y = 15 }


\sf{ y = }{\sf{( 15)/(3)}}


\sf{ y = }{\sf{\cancel{( 15)/(3)}}}


\bold{ y = 5 }

Thus, The value of y is 5

Now,

Subsitute the value of y in eq(1) :-


\sf{ x + 2(5) = 13 }


\sf{ x + 10 = 13 }


\sf{ x = 13 - 10 }


\bold{ x = 3 }

Hence, The value of x and y are 5 and 3 .


\bold{\huge{\underline{ Let's \: Verify }}}

Equation 1 :-


\sf{ x + 2y = 13 }


\sf{ 3 + 2(5) = 13 }


\sf{ 3 + 10 = 13 }


\sf{ 13 = 13 }


\bold{ LHS = RHS }

Equation 2 :-


\sf{ x + 5y = 28 }


\sf{ 3 + 5(5) = 28 }


\sf{ 3 + 25 = 28 }


\sf{ 28 = 28 }


\bold{ LHS = RHS }

User Bryan Chen
by
3.7k points