Answer:
B
Explanation:
x-intercepts:
factor the function
f(x)=(x+3)(x+1)
zeros at x=-3,-1
x-intercepts --> (-3,0),(-1,0)
y-intercepts:
set x=0 in f(x)
f(0)=(0)^2+4(0)+3=3
y-intercept --> (0,3)
find minimums and maximums
The max or min of a quadratic function occurs at x=-b/(2a). If a is negative, the max value of the function is f(-b/(2a)). if a is positive, the minimum value of the function is f(-b/(2a)).
f(x)=ax^2+bx+c
f(x)=x^2+4x+3
here a is positive so you are looking for a minimum,
x=-b/(2a)
x=-4/(2*1)
x=-2 ----> plug into f(x), f(-2)=(-2)^2+4(-2)+3=-1
minimum (-2,-1)