214k views
4 votes
What is the factored form of x2 + 4xy − 21y2?

1 Answer

5 votes

Answer:


\mathrm{Factor}\:x^2+4xy-21y^2:\quad \left(x-3y\right)\left(x+7y\right)

Explanation:

Given the expression


x^2+4xy-21y^2

We can write the expression by breaking it into the groups such as:


=\left(x^2-3xy\right)+\left(7xy-21y^2\right)


\mathrm{Factor\:out\:}x\mathrm{\:from\:}x^2-3xy\mathrm{:\quad }x\left(x-3y\right)


\mathrm{Factor\:out\:}7y\mathrm{\:from\:}7xy-21y^2\mathrm{:\quad }7y\left(x-3y\right)


=x\left(x-3y\right)+7y\left(x-3y\right)


\mathrm{Factor\:out\:common\:term\:}x-3y


=\left(x-3y\right)\left(x+7y\right)

Therefore,


\mathrm{Factor}\:x^2+4xy-21y^2:\quad \left(x-3y\right)\left(x+7y\right)

User Roy Amoyal
by
4.1k points