Answer:
and
.
Explanation:
We have been given that point b has coordinates (1,2). The x-coordinate of point a is -2. The distance of point a and point b is 5 units.
We will use distance formula to solve our given problem.
![D=√((x_2-x_1)+(y_2-y_1)^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/f6gri52cbot115ft3s9ck4qmqufq07qeg7.png)
Let us assume that (1,2) is
and point
![(-2,y)=(x_2,y_2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/wk76ii6h8tybofindv6ebszwrdf2yd7i6g.png)
![5=√((-2-1)^2+(y-2)^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/jzuwzv8o1zm09juq284usun3bluc0cic86.png)
![5=√((-3)^2+(y-2)^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/6t993gjqvz7his1y8zro0v3svbtvm7dx65.png)
![5=√(9+y^2-4y+4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/u5tcuzxw9urtbowal34hqixhad51qh5kyr.png)
![5=√(y^2-4y+13)](https://img.qammunity.org/2021/formulas/mathematics/high-school/164nimy9znka8p9c08734ftaozcz9ro4u7.png)
Square both sides:
![5^2=(√(y^2-4y+13))^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/f1n6hhk9pnwwokdx7btz50yboke2ertdtu.png)
![25=y^2-4y+13](https://img.qammunity.org/2021/formulas/mathematics/high-school/nqpkzj7lhh5gj5eiqen7maj90nn6594f21.png)
![y^2-4y+13-25=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/2qmorwasvhetgbt7e4ea62an2act3fmxod.png)
![y^2-4y-12=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/ytmbc4ds3msy8830yr6xoxcwosdzhr05h7.png)
![y^2-6y+2y-12=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/bkjf900qqzfny749jtc7hisejp149so3s9.png)
![(y-6)(y+2)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/fn8f5xjj622iibql4xj9vf2mqwme2wezff.png)
![(y-6)=0,(y+2)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/5ldkb4f8x5yoh3dknyma69me4835vald3o.png)
![(y=6,y=-2](https://img.qammunity.org/2021/formulas/mathematics/high-school/7k5ngcu50312g0899y5hq7ylcbdqwr6dcf.png)
Therefore, the possible coordinates of point 'a' are
and
.