Answer:
Explanation:
Remember from Trig. identity:
Tan(a + b) = (tan a + tan b)/1 - tana × tan b
From the above,
(tan 77 + tan 43)/1 - tan 77 × tan 43
Comparing Both equations on the LHS,
a = 77
b = 43
Therefore, on the right hand side;
Tan (a + b) = tan (77 + 43)
= tan 120
Tan θ = sin θ/cos θ
Sin 120 = (root3)/2
Cos 120 = -1/2
Therefore, tan 120 = (root3)/2 × -2/1
= -(root3)