443,676 views
5 votes
5 votes
Help me please



I couldn't solve it​

Help me please I couldn't solve it​-example-1
User Ndyer
by
3.3k points

2 Answers

25 votes
25 votes


\text{L.H.S}\\\\=(\sin^4 A - \cos^4 A)/( \sin A + \cos A)\\\\\\=((\sin^2 A)^2-(\cos^2 A)^2)/(\sin A + \cos A)\\\\\\=((\sin^2 A + \cos^2 A)(\sin^2 A-\cos^2 A))/(\sin A + \cos A)\\\\\\=(1\cdot(\sin A+\cos A)(\sin A - \cos A))/(\sin A +\cos A)\\\\\\=\sin A - \cos A\\\\\\=\text{R.H.S}~~~ \\\\\text{Proved.}

User Fabian Merchan
by
2.6k points
26 votes
26 votes

Answer:

heya! ^^


\\ \frac{ \sin {}^(4) (A) - \cos {}^(4) (A) }{ (\sin \: A + \cos \: A) } = ( \: sin \: A\: - \: cos \: A \: )\\


\\LHS = \frac{ \sin {}^(4) (A) - \cos {}^(4) (A) }{ (\sin \: A + \cos \: A) } \\ \\ \frac{( \sin {}^(2) \: A + \cos {}^(2) \: A)( \sin {}^(2) A - \cos {}^(2) A) }{ (\sin \: A + \cos \: A) } \\ \\ we \: know \: that \: - \: sin {}^(2) A + cos {}^(2) A = 1 \\ \\ \therefore \: \frac{(1)(\sin {}^(2) \: A - \cos {}^(2) \: A)}{(\sin \: A + \cos \: A)}

now , we're well aware of the algebraic identity -


a {}^(2) - b {}^(2) = (a + b)(a - b)

using the identity in the equation above ,


\dashrightarrow \: \frac{(sin \:A - \: cos \: A)\cancel{(sin \:A + \: cos \: A )}}{\cancel{(sin \: A\: + \: cos \: A)}} \\ \\ \dashrightarrow \: (sin \: A \: - \: cos \: A) = RHS

hence , proved ~

hope helpful :D

User Barbushin
by
2.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.