172,119 views
10 votes
10 votes
8ntergrate by parts |x^3 e^-x dx​

User Dbbd
by
1.9k points

1 Answer

11 votes
11 votes

I assume the integral is


\displaystyle \int x^3 e^(-x) \, dx

Integrate by parts with


u = x^3 \implies du = 3x^2 \, dx


dv = e^(-x) \, dx \implies v = -e^(-x)

so that


\displaystyle \int u \, dv = uv - \int v \, du

i.e.


\displaystyle \int x^3 e^(-x) \, dx = -x^3 e^(-x) + 3 \int x^2 e^(-x) \, dx

Integrate by parts again, this time with


u = x^2 \implies du = 2x \, dx


dv = e^(-x) \, dx \implies v = -e^(-x)

and so


\displaystyle \int x^2 e^(-x) \, dx = -x^2 e^(-x) + 2 \int x e^(-x) \, dx


\implies \displaystyle \int x^3 e^(-x) \, dx = -x^3 e^(-x) + 3 \left(-x^2 e^(-x) + 2 \int x e^(-x) \, dx\right)


\implies \displaystyle \int x^3 e^(-x) \, dx = -x^3 e^(-x) - 3x^2 e^(-x) + 6 \int x e^(-x) \, dx

Once more, with


u = x \implies du = dx


dv = e^(-x) \, dx \implies v = -e^(-x)


\displaystyle \int x e^(-x) \, dx = -xe^(-x) + \int e^(-x) \, dx


\implies \displaystyle \int x^3 e^(-x) \, dx = -x^3 e^(-x) - 3x^2 e^(-x) + 6 \left(-xe^(-x) + \int e^(-x) \, dx\right)


\implies \displaystyle \int x^3 e^(-x) \, dx = -x^3 e^(-x) - 3x^2 e^(-x) -6xe^(-x) + 6 \int e^(-x) \, dx

Finally,


\displaystyle \int e^(-x) \, dx = -e^(-x) + C

and so


\displaystyle \int x^3 e^(-x) \, dx = -x^3 e^(-x) - 3x^2 e^(-x) -6xe^(-x) - 6 e^(-x) + C

or equivalently,


\displaystyle \int x^3 e^(-x) \, dx = \boxed{-(x^3+3x^2+6x+6) e^(-x) + C}

We can also approach the integral more generally by considering


I_n = \displaystyle \int x^n e^(-x) \, dx

Integrate by parts with


u = x^n \implies du = nx^(n-1) \, dx


dv = e^(-x) \, dx \implies v = -e^(-x)

Then


\displaystyle I_n = -x^n e^(-x) + n \int x^(n-1) e^(-x) \, dx = -x^n e^(-x) + n I_(n-1)

We can solve the recurrence using the initial "value"
I_0 = -e^(-x)+C to find a general formula for
I_n. Then we get the integral we want
I_3 "for free".

User Andresch Serj
by
2.9k points