17.7k views
1 vote
In ΔLMN, \overline{LN} LN is extended through point N to point O, m∠NLM = (x+1)^{\circ}(x+1) ∘ , m∠LMN = (x+15)^{\circ}(x+15) ∘ , and m∠MNO = (4x+6)^{\circ}(4x+6) ∘ . Find m∠MNO.

User BegemoT
by
5.0k points

1 Answer

4 votes

Answer:

26 degree

Explanation:

We are given that in triangle


\angle NLM=(x+1)^(\circ)


\angke LMN=(x+15)^(\circ)


\angle MNO=(4x+6)^(\circ)


\angle MNO+\angle MNL=180^(\circ)

By using linear pair angles property


\angle MNL=180-\angle MNO=180-(4x+6)


\angle MNL+\angle NLM+\angle LMN=180^(\circ)

By using triangle angles sum property


180-(4x+6)+x+15+x+1=180


2x+16=180-180+4x+6


16-6=4x-2x=2x


2x=10


x=(10)/(2)=5

Substitute the value


\angle MNO=4(5)+6=20+6=26^(\circ)

User Dmitry Nedbaylo
by
4.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.