Answer:
The dimensions of the rectangular box is 29.08 ft×29.08 ft×4.85 ft.
Minimum cost= 26,779.77 cents.
Explanation:
Given that a rectangular box with a volume of 684 ft³.
The base and the top of the rectangular box is square in shape.
Let the length and width of the rectangular box be x.
[since the base is square in shape, length=width]
and the height of the rectangular box be h.
The volume of rectangular box is = Length ×width × height
=(x²h) ft³
According to the problem,
![x^2h=684](https://img.qammunity.org/2021/formulas/mathematics/college/e4yhue2r2kusen7km7vc0uyplz7iohv8rl.png)
.....(1)
The area of the base and top of rectangular box is = x² ft²
The surface area of the sides= 2(length+width) height
=2(x+x)h
=4xh ft²
The total cost to construct the rectangular box is
=[(x²×20)+(x²×10)+(4xh×2.5)] cents
=(20x²+10x²+10xh) cents
=(30x²+10xh) cents
Total cost= C(x).
C(x) is in cents.
∴C(x)=30x²+10xh
Putting
![C(x)=30x^2+10x*(684)/(x^2)](https://img.qammunity.org/2021/formulas/mathematics/college/ys3vlkbevki5nryyn4sig29r1vqp3vqvei.png)
![\Rightarrow C(x)=30x^2+(6840)/(x)](https://img.qammunity.org/2021/formulas/mathematics/college/tefoq9pcikd9nhlbw2taj5lmxwa58a6spa.png)
Differentiating with respect to x
![C'(x)=60x-(6840)/(x^2)](https://img.qammunity.org/2021/formulas/mathematics/college/x7c5be4nnq7sg8sxjtdsn9lsqy75sq41o3.png)
To find minimum cost, we set C'(x)=0
![\therefore60x-(6840)/(x^2)=0](https://img.qammunity.org/2021/formulas/mathematics/college/2wskhtagffabsb3vu1gnm5tkh0bptrbdtt.png)
![\Rightarrow60x=(6840)/(x^2)](https://img.qammunity.org/2021/formulas/mathematics/college/5hpjr6tzjcmxzrajaooolnld7cwdt6ohfj.png)
![\Rightarrow x^3=(6840)/(60)](https://img.qammunity.org/2021/formulas/mathematics/college/lh7zcu6d961p1eeuahtgl30ls0bfsxkwwg.png)
ft.
Putting the value x in equation (1) we get
![h=(684)/((4.85)^2)](https://img.qammunity.org/2021/formulas/mathematics/college/rkeri8p84e5idf8r054t0ztrl733hdlhlp.png)
≈29.08 ft.
The dimensions of the rectangular box is 29.08 ft×29.08 ft×4.85 ft.
Minimum cost C(x)=[30(29.08)²+10(29.08)(4.85)] cents
=29,779.77 cents