Answer:
![Length=7units\\\\Width=5units](https://img.qammunity.org/2021/formulas/mathematics/middle-school/pddfhzejh5qv2v5dctuzwntzgwho7h73ne.png)
Explanation:
Width=(Length-2) units
W=(L-2) units
Area of the rectangle= 35 square units
Area = length* Width
![35= L*(L-2)\\\\35=L^2-2L](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1ufzvyi17zjx6zdcnwdiongh52tycq34xm.png)
Subtracting 35 both sides:
![L^2-2L-35=0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/p8b5uharv0sh38266fbo2zwvo9m6huhmxg.png)
Solving the quadratic equation for 'L' ;
Using factorization:
![L^2+5L-7L-35=0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2x3jo59jlk2io7u0ayovihltip6u9c75gn.png)
Taking common from the equation :
![L(L+5)-7(L+5)=0\\\\(L+5)(L-7)=0\\\\L+5=0\\\\L=-5](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4lm0qgjup7g5ke6p8x0ej7vq58t426m26c.png)
OR
![L-7=0\\\\L=7](https://img.qammunity.org/2021/formulas/mathematics/middle-school/yjmtyu9vctwv8pm06afw2i8s3so4nclsbh.png)
The length cannot be negative, therefore Length(L)= 7
![Width=Length-2\\\\=7-2\\\\=5 units](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2gj5j7ht19q5acr69nmaycy4p3i85ctv9d.png)
![Length=7units\\\\Width=5units](https://img.qammunity.org/2021/formulas/mathematics/middle-school/pddfhzejh5qv2v5dctuzwntzgwho7h73ne.png)