201k views
3 votes
Find C and D using formula for special right triangles

Find C and D using formula for special right triangles-example-1

1 Answer

6 votes

Given:

Right triangles:

To find:

The value of c and value of d

Solution:

In the first right triangle:

θ = 45°

Opposite side to θ = 5

Hypotenuse = c


$\sin \theta=\frac{\text { Opposite side of } \theta}{\text { Hypotenuse }}


$\sin 45^\circ=(5)/(c)

The value of sin 45° =
(1)/(\sqrt 2)


$(1)/(\sqrt 2)=(5)/(c)

Do cross multiplication, we get


c=5√(2)

In the second right triangle:

θ = 60°

Opposite side to θ = 4

Adjacent side to θ = d


$\tan \theta=\frac{\text { Opposite side of } \theta}{\text { Adjacent side of } \theta}


$\tan 60^\circ=(4)/(d)


$√(3) =(4)/(d)

Do cross multiplication, we get


$d=(4)/(√(3) )

The value of
c=5√(2) and
d=(4)/(√(3) ).

User Geh
by
5.9k points