104k views
3 votes
Find S sub 12 for the geometric series:
1.5+ (-3) + 6 +....

1 Answer

4 votes

Answer:

S12 for geometric series: 1.5+ (-3) + 6 +.... would be: -2047.5

Explanation:

Given the sequence to find the sum up-to 12 terms


1.5+ (-3) + 6 +....

A geometric sequence has a constant ratio 'r' and is defined by


a_n=a_1\cdot r^(n-1)


\mathrm{Compute\:the\:ratios\:of\:all\:the\:adjacent\:terms}:\q\:r=(a_(n+1))/(a_n)


(\left(-3\right))/(1.5)=-2,\:\quad (\left(6\right))/(\left(-3\right))=-2


\mathrm{The\:ratio\:of\:all\:the\:adjacent\:terms\:is\:the\:same\:and\:equal\:to}


r=-2


\mathrm{The\:first\:element\:of\:the\:sequence\:is}


a_1=1.5

as


a_n=a_1\cdot r^(n-1)


\mathrm{Therefore,\:the\:}n\mathrm{th\:term\:is\:computed\:by}\:


a_n=1.5\left(-2\right)^(n-1)


\mathrm{Geometric\:sequence\:sum\:formula:}


a_1(1-r^n)/(1-r)


\mathrm{Plug\:in\:the\:values:}


n=12,\:\spacea_1=1.5,\:\spacer=-2


=1.5\cdot (1-\left(-2\right)^(12))/(1-\left(-2\right))


=1.5\cdot (1-\left(-2\right)^(12))/(1+2)


\mathrm{Multiply\:fractions}:\quad \:a\cdot (b)/(c)=(a\:\cdot \:b)/(c)


=(\left(1-\left(-2\right)^(12)\right)\cdot \:1.5)/(1+2)


=(-6142.5)/(1+2)
\left(1-\left(-2\right)^(12)\right)\cdot \:1.5=-6142.5


=(-6142.5)/(3)


\mathrm{Apply\:the\:fraction\:rule}:\quad (-a)/(b)=-(a)/(b)


=-(6142.5)/(3)


=-2047.5

Thus, S12 for geometric series: 1.5+ (-3) + 6 +.... would be: -2047.5

User Neopickaze
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories