Answer:
The electrical power is 96.5 W/m^2
Step-by-step explanation:
The energy balance is:
Ein-Eout=0
![qe+\alpha sGs+\alpha skyGsky-EEb(Ts)-qc=0](https://img.qammunity.org/2021/formulas/engineering/college/1iln3b5cou57muewmdc12jt86ji1xnam3o.png)
if:
Gsky=oTsky^4
Eb=oTs^4
qc=h(Ts-Tα)
![\alpha s=\frac{\int\limits^\alpha _0 {\alpha l Gl} \, dl }{\int\limits^\alpha _0 {Gl} \, dl }](https://img.qammunity.org/2021/formulas/engineering/college/2hrdh5i2nt3qhdy0aocqzitgwuzbtjzraf.png)
![\alpha s=\frac{\int\limits^\alpha _0 {\alpha lEl(l,5800 } \, dl }{\int\limits^\alpha _0 {El(l,5800)} \, dl }](https://img.qammunity.org/2021/formulas/engineering/college/qlpyzn8tf49f8hx6w1ekr5y9bg8m8e0ax1.png)
if Gl≈El(l,5800)
![\alpha s=(1-0.2)F(0-2)+(1-0.7)(1-F(0-2))](https://img.qammunity.org/2021/formulas/engineering/college/si31lvu6oha3asfmde7208pciinjhihpxs.png)
lt= 2*5800=11600 um-K, at this value, F=0.941
![\alpha s=(0.8*0.941)+0.3(1-0.941)=0.77](https://img.qammunity.org/2021/formulas/engineering/college/rcjs9ldukbonyxchai5tnpconan8pqa7zi.png)
The hemispherical emissivity is equal to:
![E=(1-0.2)F(0-2)+(1-0.7)(1-F(0-2))](https://img.qammunity.org/2021/formulas/engineering/college/jh6pipxqsdn9to8lqd0twi36u3666ik0x2.png)
lt=2*333=666 K, at this value, F=0
![E=0+(1-0.7)(1)=0.3](https://img.qammunity.org/2021/formulas/engineering/college/vau5m8l0xuc82640igyb6shij4xxb2vofl.png)
The hemispherical absorptivity is equal to:
![qe=EoTs^(4)+h(Ts-T\alpha )-\alpha sGs-\alpha oTsky^(4)=(0.3*5.67x10^(-8)*333^(4))+10(60-20)-(0.77-600)-(0.3*5.67x10^(-8)*233^(4))=96.5 W/m^(2)](https://img.qammunity.org/2021/formulas/engineering/college/n5esdad6lqtq22www9l70jvnz322drffvi.png)