Answer:
The speed at point B is 5.33 m/s
The normal force at point B is 694 N
Step-by-step explanation:
The length of the spring when the collar is in point A is equal to:
![lA=\sqrt{0.2^(2)+0.2^(2) }=0.2√(2)m](https://img.qammunity.org/2021/formulas/engineering/college/vff2j99z1qmq3a2eg9gfyipo6ddam1oryu.png)
The length in point B is:
lB=0.2+0.2=0.4 m
The equation of conservation of energy is:
(eq. 1)
Where in point A: Tc = 1/2 mcVA^2, Ts=0, Vc=mcghA, Vs=1/2k(lA-lul)^2
in point B: Ts=0, Vc=0, Tc = 1/2 mcVB^2, Vs=1/2k(lB-lul)^2
Replacing in eq. 1:
![(1)/(2)m_(c)v_(A)^(2)+0+m_(c)gh_(A)+ (1)/(2)k(l_(A)-l_(ul)) ^(2)=(1)/(2)m_(c)v_(B)^(2)+0+0+(1)/(2)k(l_(B)-l_(ul)) ^(2)](https://img.qammunity.org/2021/formulas/engineering/college/qckhc88sehk26pwh6ufjnj8728k5x8n3xi.png)
Replacing values and clearing vB:
vB = 5.33 m/s
The balance forces acting in point B is:
Fc-NB-Fs=0
![(m_(C)v_(B)^(2) )/(R)-N_(B)-k(l_(B)-l_(ul))=0](https://img.qammunity.org/2021/formulas/engineering/college/cuokunxxkzai7amaw3hahwrwcslmx1glzt.png)
Replacing values and clearing NB:
NB = 694 N