first off let's change the mixed fractions to improper fractions, and let's Hailey's account first.
![\stackrel{mixed}{9(1)/(4)}\implies \cfrac{9\cdot 4+1}{4}\implies \stackrel{improper}{\cfrac{37}{4}} ~\hfill \stackrel{mixed}{8(7)/(8)}\implies \cfrac{8\cdot 8+7}{8}\implies \stackrel{improper}{\cfrac{71}{8}} \\\\[-0.35em] ~\dotfill](https://img.qammunity.org/2023/formulas/mathematics/high-school/bto6tvh77ecaoqy1250q0n0ic88z996fjc.png)
![~~~~~~ \textit{Continuously Compounding Interest Earned Amount} \\\\ A=Pe^(rt)\qquad \begin{cases} A=\textit{accumulated amount}\dotfill &\stackrel{43000(2)}{\$86000}\\ P=\textit{original amount deposited}\dotfill & \$43000\\ r=rate\to (71)/(8)\%\to (~~ (71)/(8)~~)/(100)\dotfill &0.08875\\ t=years \end{cases} \\\\\\ 86000=43000e^(0.08875\cdot t)\implies \cfrac{86000}{43000}=e^(0.08875t)\implies 2=e^(0.08875t)](https://img.qammunity.org/2023/formulas/mathematics/high-school/1kdl199k36kiobvub4rzrg5nyd36lip8nt.png)
![\ln(2)=\ln(e^(0.08875t))\implies \log_e(2)=\log_e(e^(0.08875t))\implies \ln(2)=0.08875t \\\\\\ \cfrac{\ln(2)}{0.08875}=t\implies 7.81\approx t](https://img.qammunity.org/2023/formulas/mathematics/high-school/ugmoqj6d58jougs7gbqmk05gqgnzlal65k.png)
ok, now we know how long it takes for Hailey's money to double, how much money does Aiden have by then?
![~~~~~~ \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+(r)/(n)\right)^(nt) \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill &\$43000\\ r=rate\to (37)/(4)\%\to (~~ (37)/(4)~~)/(100)\dotfill &0.0925\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{monthly, thus twelve} \end{array}\dotfill &12\\ t=years\dotfill &(\ln(2))/(0.08875) \end{cases}](https://img.qammunity.org/2023/formulas/mathematics/high-school/8wb7cfvjht86xxkb5kgxb4w82feipp6q0y.png)
![A=43000\left(1+(0.0925)/(12)\right)^{12\cdot (\ln(2))/(0.08875)}\implies A=43000\left( (4837)/(4800) \right)^{(12\ln(2))/(0.08875)}\implies \boxed{A\approx 88311}](https://img.qammunity.org/2023/formulas/mathematics/high-school/gtk33gjmn2p7cfbahxffupjhqqmf4hnfj9.png)
notice, in Hailey's amount we used the logarithmic value for "t", just to avoid any rounding issues.