Answer:
Diffusion Flux = 8.81 x 10^(-13) Kg/m².s
Step-by-step explanation:
We know that
P_N2 = 5 MPa
J = D•(dc/dx)
Thus, J ≈ D•(Δc/Δx)
Now, D is expressed as;
D = D_o(e^(-Qd/RT))
Put it for D in J equation to get;
J = D_o(e^(-Qd/RT))•(Δc/Δx)
We are also given that;
C_N = 4.9 x 10^(-3) √(P_N2) • (e^(-37,600/RT))
Now, R is gas constant with a value of R = 8.314 J/mol·K
T = 300°C = 300 + 273K = 573 °K
So, % wt of N_2 at face 1 is;
%wt = 4.9 x 10^(-3) √(5) • (e^(-37,600/(8.314 x 573)) %
%wt = 4.092 x 10^(-6) %
Now, let's do the same for face 2 where P_N2 = 0.1 MPa;
% wt of N_2 at phase 2 is;
% wt = 4.9 x 10^(-3) √(0.1) • (e^(-37,600/(8.314 x 573)) %
%wt = 5.79 x 10^(-7) %
Concentration of N_2 at face 1 will be = %wt • ρ_fe
Where, ρ_fe is density of iron and it has a value of 7873 kg/m³
Thus,
Concentration of N_2 at face 1 (C1) = 4.092 x 10^(-6) x 7873 = 0.0322
C1 = 0.0322 kg/m³
Let's do the same for face 2;
Concentration of N_2 at face 2; (C2) = 5.79 x 10^(-7) x 7873 = 0.00456
C2 = 0.00456 kg/m³
So,
Δc = C1 - C2 = 0.0322 - 0.00456 = 0.02764 Kg/m³
Substitute this value for Δc in J equation. Thus;
J = D_o(e^(-Qd/RT))•(Δc/Δx)
J = 5 x 10^(-7)[(e^(-77,000/(8.314x573))] • (0.02764/(1.5 x 10^(-3))) = 8.81 x 10^(-13) Kg/m².s