Answer:
h=1 df/dx=-15
h=0.1 df/dx=-10.5
h=0.01 df/dx=-10.05
h=0.001 df/dx=-10.005
h=0.0001 df/dx=-10.0005
Explanation:
The function should be 5x^2.
If the function is linear, the answer is very simple: it is 5 for every value of h.
The rate of change can be defined as:
![(\Delta f)/(\Delta x) =(f(a+h)-f(a))/(h)](https://img.qammunity.org/2021/formulas/mathematics/college/2trfq9kaha1pjh8dw1xus7vbh4sdvdatrw.png)
For this function f=5x we have:
![f(a)=5a^2\\\\f(a+h)=5(a+h)^2=5a^2+10ah+5h^2](https://img.qammunity.org/2021/formulas/mathematics/college/uikkrma6r2l6xkjkmadrt17465cvfykmf7.png)
Then, we have:
![(\Delta f)/(\Delta x) =(f(a+h)-f(a))/(h)=(5a^2-(5a^2+10ah+5h^2))/(h)=-10a+5h](https://img.qammunity.org/2021/formulas/mathematics/college/969krcjq20fjgjzatc3kq0yic2z2m4hspw.png)
The value for a is a=1
For h=1
![\Delta f/\Delta x=-10a-5h=-10-5=-15](https://img.qammunity.org/2021/formulas/mathematics/college/egfv8kekpb1t3sjhipl6whm440ufqbel5v.png)
For h=0.1
![\Delta f/\Delta x=-10-5(0.1)=-10-0.5=-10.5](https://img.qammunity.org/2021/formulas/mathematics/college/4ft99blr0cp9mpgekyx33pwm2yk7exno19.png)
For h=0.01
![\Delta f/\Delta x=-10-5(0.01)=-10-0.05=-10.05](https://img.qammunity.org/2021/formulas/mathematics/college/oi73zi80fjlcowpi60lwhvt55cbgr2n906.png)
For h=0.001
![\Delta f/\Delta x=-10-5(0.001)=-10-0.005=-10.005](https://img.qammunity.org/2021/formulas/mathematics/college/xuoxkuf7ooepgdw486vjli99fonavz9yc1.png)
For h=0.0001
![\Delta f/\Delta x=-10-5(0.0001)=-10-0.0005=-10.0005](https://img.qammunity.org/2021/formulas/mathematics/college/e72in5mwamkmqm282wpvdwgxz5tphq0cw7.png)