92.2k views
0 votes
What fraction of 5 MeV α particles will be scattered through angles greater than 4.5° from a gold foil (Z = 79, density = 19.3 g/cm3) of thickness 10-8 m?

User AnilJ
by
4.5k points

1 Answer

1 vote

Answer:

The fraction of particles is
6.21 * 10^(-4)

Step-by-step explanation:

Given :

Alpha particle atomic no.
Z_(1) = 2

Gold foil atomic number
Z_(2) = 79

Thickness
t = 10^(-8) m

Density
\rho = 19.3
(g)/(cm^(3) )

Kinetic energy of alpha particle
K = 5 * 1.6 * 10^(-19) * 10^(6) V


K = 8 * 10^(-13) V

Scattered angle
\alpha = 4.5°

Fraction of incident particle scattered at angle
\alpha is,


f(\alpha ) = \pi nt ((Z_(1)e Z_(2) e )/(8\pi \epsilon _(o) K ) )^(2) \cot ^(2) ((\alpha )/(2) )

Where
n = number density of particle,
\epsilon _(o) = 8.85 * 10^(-12)

For calculating value of
n


n = (\rho N_(A) )/(M)

Where
N_(A) = 6.022 * 10^(23),
M = 197 ( Mass number of gold foil )


n = 5.9 * 10^(28)
(atom)/(m^(3) )

Put the all value in above equation,


f(4.5 ) = 3.14 * 5.9 * 10^(28) * 10^(-8) ((2 * 79 (1.6 * 10^(-19) ) ^(2) )/(8* 3.14 * 8.85 * 10^(-12) 8 * 10^(-13) ) )^(2) \cot ^(2) ((4.8 )/(2) )


f (4.5 ) = 0.96 * 647.78 * 10^(-6)


f (4.5) = 6.21 * 10^(-4)
(atoms)/(m^(2) )

Therefore, the fraction of particles is
6.21 * 10^(-4)

User Kroshka Kartoshka
by
4.3k points