Answer:
(3,5)
Step-by-step explanation:
Given the basis β={(1,1),(0,1)} and x=(3,8), I am to find the corresponding coordinate vector [x]β. I claim that the coordinate vectors entries [TeX] x_{1} [/TeX] and [TeX] x_{2} [/TeX] meet the following criterion:
[TeX] x_{1} (1,1) +x_{2} (0,1)=(3,8)[/TeX]
Placing this in matrix form
[TeX]\left(\begin{array}{cc}1 & 0\\ 1 & 1 \end{array} \right)\left(\begin{array}{c}x_{1} \\ x_{2}\end{array} \right) [/TeX]
[TeX] x_{1} +0x_{2} =3[/TeX]
[TeX] x_{1} =3[/TeX]
Also,
[TeX] 1x_{1} +1x_{2} =8[/TeX]
[TeX] 3 + 1x_{2} =8[/TeX]
[TeX] x_{2} =8-3=5[/TeX]
The coordinate matrix therefore is given as (3,5)