46.2k views
4 votes
What is the derivative of this function: F(x)=(5e^4x)+(e^-x^6)

1 Answer

7 votes

Answer:


(dF(x))/(dx) =20e^(4x)-6x^5e^{x^(-6)}

Explanation:

The derivative of
F(x) is calculated as follows:


(dF(x))/(dx)=(d)/(dx) [(5e^(4x))+(e^(-x^6))]


(dF(x))/(dx)=(d)/(dx) [(5e^(4x))]+(d)/(dx) [(e^(-x^6))]


(dF(x))/(dx)=5(d)/(dx) [(e^(4x))]+(d)/(dx) [(e^(-x^6))]

using the chain rule we find that


(d)/(dx) [(e^(4x))]= (d)/(d(4x)) [(e^(4x))]+ (d)/(dx) [4x] = 4e^(4x),


(d)/(dx) [(e^(-x^6))] = (d)/(d(-x^6)) [(e^(-x^6))]+(d)/(dx) [(-x^6})]= -6x^5e^(-x^6);

therefore,


(dF(x))/(dx)=5(d)/(dx) [(e^(4x))]+(d)/(dx) [(e^(-x^6))] =5(4e^(4x))-6x^5e^{x^(-6)}


\boxed{(dF(x))/(dx) =20e^(4x)-6x^5e^{x^(-6)}}

User Nicolas Gago
by
4.3k points