221k views
4 votes
Please solve this
(Rational numbers 8th grade)

Please solve this (Rational numbers 8th grade)-example-1
User Chackerian
by
8.3k points

1 Answer

4 votes

Question # 1

Answer:


(-2)/(3)* (3)/(5)+(5)/(2)* (3)/(5)* (1)/(6)=-(3)/(20)

Explanation:

Given the expression


(-2)/(3)* (3)/(5)+(5)/(2)* (3)/(5)* (1)/(6)


=-(2)/(5)+(5)/(2)* (3)/(5)* (1)/(6)
(-2)/(3)* (3)/(5)=-(2)/(5)


=-(2)/(5)+(1)/(4)
(5)/(2)* (3)/(5)* (1)/(6)=(1)/(4)


\mathrm{Least\:Common\:Multiplier\:of\:}5,\:4:\quad 20


=-(8)/(20)+(5)/(20)


\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad (a)/(c)\pm (b)/(c)=(a\pm \:b)/(c)


=(-8+5)/(20)


\mathrm{Add/Subtract\:the\:numbers:}\:-8+5=-3


=(-3)/(20)


\mathrm{Apply\:the\:fraction\:rule}:\quad (-a)/(b)=-(a)/(b)


=-(3)/(20)

Therefore,


(-2)/(3)* (3)/(5)+(5)/(2)* (3)/(5)* (1)/(6)=-(3)/(20)

Question # 2

Answer:


(2)/(5)* (-3)/(7)-(1)/(6)* (3)/(2)* (1)/(14)* (2)/(5)=-(5)/(28)

Explanation:

Given


(2)/(5)* (-3)/(7)-(1)/(6)* (3)/(2)* (1)/(14)* (2)/(5)


=-(6)/(35)-(1)/(6)* (3)/(2)* (2)/(5)* (1)/(14)
(2)/(5)* (-3)/(7)=-(6)/(35)


=-(6)/(35)-(1)/(140)
(1)/(6)* (3)/(2)* (1)/(14)* (2)/(5)=(1)/(140)


\mathrm{Least\:Common\:Multiplier\:of\:}35,\:140:\quad 140


=-(24)/(140)-(1)/(140)


\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad (a)/(c)\pm (b)/(c)=(a\pm \:b)/(c)


=(-24-1)/(140)


\mathrm{Subtract\:the\:numbers:}\:-24-1=-25


=(-25)/(140)


\mathrm{Apply\:the\:fraction\:rule}:\quad (-a)/(b)=-(a)/(b)


=-(25)/(140)


\mathrm{Cancel\:the\:common\:factor:}\:5


=-(5)/(28)

Therefore,


(2)/(5)* (-3)/(7)-(1)/(6)* (3)/(2)* (1)/(14)* (2)/(5)=-(5)/(28)

User Ravnur
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories