Option C:
can be used to find the length of PQ.
Solution:
Given PQR is a right triangle.
θ = m∠Q = 29°
Opposite of θ = PR = 10
Hypotenuse = PQ = ?
To find the length of PQ:
Using trigonometric ratio formula:
![$\sin \theta=\frac{\text { Opposite side of } \theta}{\text { Hypotenuse }}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qfysq7qwasyucaz35wdy48z7dpmuaew54u.png)
![$\sin \theta=(PR)/(PQ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/k0fg7zrco4hk3m3tdbepucdufliyg8mphr.png)
![$\sin 29^\circ=(10)/(PQ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/42m74jf9zdr2aj463cdbuqs80surl26g33.png)
Multiply by PQ on both sides.
![$PQ * \sin 29^\circ=(10)/(PQ) * PQ](https://img.qammunity.org/2021/formulas/mathematics/middle-school/yuhdqxj42vwg1z5yf7pm2gprqth6oqipib.png)
![$PQ * \sin 29^\circ=10](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xqcjcko7acbjlk81iiptlalu2qr7r8yw00.png)
Divide by sin 29° on both sides.
![$(PQ * \sin 29^\circ)/( \sin 29^\circ) =(10)/( \sin 29^\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/155bfb4auqh8csq0hh5ewscsuk5wcsxkug.png)
![$PQ=(10)/( \sin 29^\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4bva8p1qv1vhhk502nw1mnxwu967awu130.png)
Therefore
can be used to find the length of PQ.
Option C is the correct answer.